Automatic Image Annotation Using Multiple Grid Segmentation
نویسندگان
چکیده
Automatic image annotation refers to the process of automatically labeling an image with a predefined set of keywords. Image annotation is an important step of content-based image retrieval (CBIR), which is relevant for many real-world applications. In this paper, a new algorithm based on multiple grid segmentation, entropy-based information and a Bayesian classifier, is proposed for an efficient, yet very effective, image annotation process. The proposed approach follows a two step process. In the first step, the algorithm generates grids of different sizes and different overlaps, and each grid is classified with a Naive Bayes classifier. In a second step, we used information based on the predicted class probability, its entropy, and the entropy of the neighbors of each grid element at the same and different resolutions, as input to a second binary classifier that qualifies the initial classification to select the correct segments. This significantly reduces false positives and improves the overall performance. We performed several experiments with images from the MSRC-9 database collection, which has manual ground truth segmentation and annotation information. The results show that the proposed approach has a very good performance compared to the initial labeling, and it also improves other scheme based on multiple segmentations.
منابع مشابه
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملFuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملScalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کاملClickstream analysis for crowd-based object segmentation with confidence
With the rapidly increasing interest in machine learning based solutions for automatic image annotation, the availability of reference annotations for algorithm training is one of the major bottlenecks in the field. Crowdsourcing has evolved as a valuable option for low-cost and large-scale data annotation; however, quality control remains a major issue which needs to be addressed. To our knowl...
متن کامل